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J .  Phys. A: Math. Gen., Vol. 11, No. 10, 1978. Printed in Great Britain 

Solving the gauge identities 

R Delbourgo 
Department of Physics, Lniversity of Tasmania, Hobart, Tasmania 7001, Australia 

Received 5 December 1977 

Abstract. We show how one may 'solve' the Ward-Takahashi identities of a gauge theory 
to determine the longitudinal Green functions in terms of the basic source propagators and 
in such a way that on-shell amplitudes reduce to their classical values. We demonstrate 
the method for scalar, spinor and vector sources in Lorentz covariant and non-covariant 
Abelian gauges; but for non-Abelian groups we work in the axial gauge in order to avoid 
fictitious terms which otherwise spoil the procedure. 

1. Introduction 

Renormalisable quantum field theories which unify the basic forces of nature are 
founded on an underlying gauge principle and are consequently endowed with many 
attractive features, not the least being calculability. The gauge invariance possessed 
by the action finds its expression in the Ward-Takahashi identities (or their non- 
Abelian counterparts) connecting the various Green functions-relations between 
amplitudes involving an additional gauge vector current or extra gauge vector line. 
These gauge identities play such a crucial role in the renormalisation programme that 
one tries to preserve them at all costs by the regularisation scheme needed to define 
quantum loop corrections (although this is sometimes not possible for chiral groups) 
and, as a result, one can relate the various action counterterms and finish up with 
overall multiplicative renormalisations. 

Such renormalisable gauge identities connect the divergence of an (n + 1)-point 
amplitude with an n-point amplitude; therefore, for an amplitude with only two 
source legs and an arbitrary number of gauge lines, one can successively move down to 
the source propagator by taking a sufficient number of divergences at the vector ends. 
Working back, one can determine a good part of the Green functions (more precisely, 
the longitudinal pieces) in terms of the two-point propagator. This is the essence of 
the gauge technique (Salam 1963, Delbourgo and Salam 1964, Strathdee 1964) and it 
has the virtue of being a gauge-covariant procedure, suitable of being adaptable to any 
other approximation method for extracting solutions of the Green functions equa- 
tions. Naturally there is vast ambiguity in the determination of the amplitudes since 
any transverse component (orthogonal to the contracting momentum) can be accept- 
ably added without affecting the gauge covariance. As we shall see, these ambiguities 
can be effectively eliminated by requiring that on the source shell the amplitudes 
reduce to their classical values: this then provides the starting gauge approximation of 
the Green functions; the field equations provide subsequent transverse corrections. 

In earlier papers the gauge technique was applied to scalar and spinor sources. We 
briefly recapitulate the method in 3: 2 and show how it can be generalised to vector 
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particles (and higher-spin fields) in Lorentz covariant Abelian gauge theories; used in 
conjunction with Dyson-Schwinger equations we derive the infrared behaviour of 
charged spin-1 electrodynamics, paralleling the work on scalar and spinor elec- 
trodynamics (Delbourgo and West 1977a, b, Delbourgo 1977). The extension of the 
gauge technique to chiral groups and to (spontaneously broken) pseudovector elec- 
trodynamics is given in 0 3. 

Since unified gauge models centre round non-Abelian groups, the resulting 
Slavnov-Taylor identities in relativistic gauges (Slavnov 1972, Taylor 1971, Lee 
1974) exhibit a rather complex form owing to the occurrence of fictitious particle 
terms; indeed, the latter render the gauge technique almost intractable since they 
include Bethe-Salpeter kernels of ghost-source scattering, whose spectral represen- 
tations are barely known, and which can only be evaluated in a certain approximate 
sense?. Therefore for non-Abelian groups we prefer to stick to ghost-free axial 
gauges (Kummer 1961, Arnowitt and Feckler 1962, Schwinger 1963, Fradkin and 
Tyutin 1970) in which the Ward-Takahashi identities for the one-particle irreducible 
amplitudes do assume their characteristically simple form and become amenable to 
the gauge technique. One must, of course, pay the price of lack of relativistic 
invariance and we show how this can be met for electrodynamics in 9: 4 before going 
on to the Yang-Mills problem in S; 5 ;  the choice of axial gauge is vindicated by the 
simple structure of the full Green functions. 

2. The gauge technique for electrodynamics 

Let A, stand for the electromagnetic field, interacting with some quantised source 
field 4 (and its adjoint $), for which the connected vacuum generating functional W is 
defined through 

exp(i WL,, j, 71) = 1 (dA dr$ d&) exp ( i  1 d4x(2(A, 4,&) -  jFA, - 74 - &j - F(A))) 

where F ( A )  is some gauge fixing term-it needs no compensating in this Abelian case. 
The phase invariance of 9 under 

84 = iA4, 136 = --$A, SA = -aA/e 

results in the functional gauge identity, 

and functional current derivatives of the above equation yield the Ward-Takahashi 
identities between the connected Green functions 

C(X*, . . . , x")=l '"+'S"W/Sj(xl). . . Sj(x,). 

a -1 a, a'c,(x; y ,  z ) =  e[a4(x - z ) ~ ( y ,  x)-s4(x - y ) ~ ( x ,  z ) ] ,  
For instance, in a covariant gauge specified by F = -(aA)'/2a, one obtains the identity 

(2) 
typical of the more general relation between dC""' and C'"'. One can arrive at 

:Pagels (1976) has nevertheless done wonders with them by assuming l/q4 behaviour of the gluon 
propagator and by picking out the infrared singular terms of the field equations. 
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similar identities for the one-particle irreducible Green functions r(n) defined through 
1, ( i ~  E CO) = r(2)-1 

o r  the functional field derivatives of 

For example, 

replaces identity (2), and so on. Extracting powers of e for each source line and taking 
Fourier transforms, we get the more familar versions of the identities? (Nishijima 
1960, Rivers 1966), 

which were first derived via the canonical commutation formalism. These identities 
are multiplicately renormalised by the same (infinite) constant. 

We  aim to obtain ‘solutions’ of the gauge set (4) with the subsequent intention of 
inserting the solutions in the Green function equations. Gauge covariance is assured 
and not something which needs to  be imposed at  the end, making this the primary 
virtue of the gauge technique. Clearly an infinite number of possible ‘solutions’ can be 
found (Rivers 1966) all differing by transverse components that disappear upon 
contraction with the gauge field momentum; but this is not to deny that longitudinal 
components are interconnected by the identities and that equations (4) d o  embody 
considerable information about the Green functions. A t  this juncture it may be worth 
pointing out that in an axial gauge which specifies n . A = 0 (by the choice of gauge 
fixing term F = Bn . A, with B acting as a Lagrangian multiplier field), the identities 
(4) remain intact but identities like (2) are altered to orthogonality conditions 

n’C,(x;y,z)=O etc. 

These axial gauge identities (Delbourgo et a1 1974, Kummer 1975) furthermore 
generalise very simply to  non-Abelian groups, unlike the Lorentz covariant gauges 
where radical modifications become necessary. 

O n e  can arrive at a non-trivial class of solutions to (4) by noticing that: (i) the 
classical values of (bare vertices) o r  of C (tree graphs) automatically obey the 
identities; (ii) successive divergences at the gauge legs bring us down to the two-point 
functions; and (iii) the propagators can themselves be represented as weighted spec- 
tral sums over free propagators. It follows that we can construct a gauge covariant set 
of quantum amplitudes by taking mass weighted sums of classical amplitudes. O n e  
could think of a more general procedure starting with a general representation of an 
N-point function and working up  to  the higher-point functions by some well defined 
algorithm-working down to lower-point functions is trivial-but this is extremely 
difficult to put into practice because spectral representations of fully off-shell ampli- 
tudes are hardly known o r  even guessed when N > 3. In any case it would be absurd 

i Please note that there is no discrepancy between these identities and those quoted in previous researches. 
There the r correspond to amputated amplitudes, not one-particle irreducible parts. 



2060 R De lbo u rgo 

to go to such lengths since the initial gauge approximation must be subject to 
transverse corrections entailed by the coupled Green functions equations, and there- 
fore the starting point may as well be chosen simply. We believe we have done this by 
reverting in the end to the spectral form of the basic Born amplitudes with all gauge 
lines removed, namely the propagator, if there is a single source line. Besides, the 
renormalisations need only be carried out on the propagators and gauge-related 
vertex functions with the higher-point amplitudes then generated through the 
skeleton expansion. 

In relativistically covariant gauges (axial gauges are considered below) where the 
propagators for scalar or spinor sources are rigorously known to possess the represen- 
tations 

A ( p ) = J  dWZp(W)(pZ-  W2+iO)-' 

S ( p ) = j  dWp(W)(y .p -  W+iOE(W))-', 

or 

the simplest gauge technique leads to the solutions 

c ( P ' ,  k i , P ) =  j dw2p(w2)C(P' ,  ki, P I W ' )  
or 

r 

where c ( .  , .I W )  stand for the classical functions for a source of mass W. The first 
non-trivial illustration, the vertex function, explicitly reads 

or (7 ) 

s ( P ) r , ( P , P - k ) S ( P - k )  = j dWP(W)[Y.P- wl-'Y,[Y. (P-k)-Wl- '  

from which one readily sees how to write down the higher-point functions in this 
gauge approximation. One facet of this construction is that on-shell, where p(Wz)+ 
S (  W2 - m 2 )  or S( W - m ) ,  the amplitudes become identically equal to the classical 
ones, and we may adopt this as the criterion which defines the initial gauge approxi- 
mation, There only remains to find the spectral functions and this can be achieved via 
the Dyson-Schwinger equations as we have reported elsewhere; the procedure, which 
leads to an integral equation for p,  is intrinsically non-perturbative. It also yields the 
infrared behaviour of the Green functions very economically (Delbourgo and West 
1977b). 

Electrodynamics of charged vector mesons is complicated by the occurrence of two 
spectral functionst 

A , , ( P ) =  J dW2[(-7,, + P , P ~ / W ~ ) P ( W ~ ) -  t7 ,y~(W2)I (~2-  W'+iO)-' (8 1 

t Actually the spinor case implicitly contains two spectral functions, the even and odd parts of p (  W ) ,  and it 
suggests that a closer analogy with mesons can be achieved by using spectral representations in Kemmer's 
0-formalism rather than (8). 
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but the solution here is readily understood if one or other of the weights is taken to be 
zero in turn. Thus T = 0 corresponds to an integral over spin-1 vector mesons of mass 
W whose field theory is governed by 

q,= -+(D,v: -D,V;)(DV”VD”V~)+ wzv;v* 

(9)  

d W 2  [ (T@@’-$) RA,,v, 
= I ( p 2 -  W 2 ) [ ( p  - k ) * -  W 2 ]  

as one can easily check; and similarly for the higher-point functions. In the appendix 
we have pursued (11) and determined the integral equations for p and T that are 
provided by the field equations. In  the infrared limit we find T + O  and p - ,  

in complete analogy to the scalar and spinor cases, which 
strongly suggests spin independence of infrared behaviour. 

2 - 1 - e 2 ( 3 - n ) / 8 n 2  (W2-rn ) 

3. Pseudovector electrodynamics 

Next we consider abnormal (1”) photons. For simplicity and also for aesthetic 
reasons we suppose that the chiral symmetry is exact at the Lagrangian level so that its 
eventual breaking is spontaneous or dynamical but not as the result of quantum 
regularisation, i.e. we introduce enough sources to cancel out offending anomalies. 
Being a true symmetry of the action the chiral U(l) group leads to its own set of gauge 
identities, quite analogous to (1). For fermion pseudovector electrodynamics where 

LF5 = &y(a + e A y S ) $  - iFw,,F””, 

the generalisations of (4) read 

-ik”r,,(p. p - k)= K 1 ( p ) y 5  + y S S - ’ ( p  - k) 
( 1 2 )  

ik*rvs,s(piki,  p k ) =  r Y w ,  p i +  u Y s  + y s r u s ( p  - k’, p )  

etc, and are trivially obeyed at the bare level (massless fermions, TFS = iy,ys, r‘”)= 0 
for n > 3). After quantum corrections however, S ( p )  propagates with a whole spec- 
trum of intermediate massive fermions from which it necessarily follows that rrr5 
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contains a pole; this implies dynamical chiral breakdown (Jackiw and Johnson 1973) 
and the generation of a pseudovector photon mass through Schwinger’s mechanism 
(1962). Thus 

~ 5 S ( e  - k ) + S ( e ) x  

= 1 d W p ( W ) ( y . p -  W ) - ’ ( k .  y - 2 W ) y s [ y . ( p - k ) -  W ] - ’  
J 

provides the solution, 

(13) 
manifesting the k 2  + 0 singularity with all its consequences. 

The solutions of the gauge identities for the higher-point amplitudes can be 
extracted from the work of Jackiw and Johnson (1973). Those authors noted that the 
phenomenological Lagrangian 

Lf5, = J y .  (d+eA)y5gl,-tF,JF’”’+~k2A2-kA. d4+&4)2-mtjexp(2ey54/p)gl, 

of massive mesons and fermions also possesses a local chiral symmetry, it being the 
coupling of A to the massless 4 which is responsible for the l / k 2  poles at the meson 
legs. By drawing all the tree graphs of this theory and suitably summing over masses, 
one arrives at the requisite solution. For instance, the four-point amplitude, with 
vector lines amputated, reads 

Gv5,de’k’,  p k )  

This initial gauge approximation can be taken as a suitable basis for a self-consistent 
determination of p (  W ) ,  but the evaluation is considerably harder than normal vector 
electrodynamics because the self-energy corrections of the pseudovector lines cannot 
be dropped in the first instance as they serve to render the meson massive and thereby 
alter the entire cut structure of S ( p ) .  Parallel comments apply to scalar and vector 
sources. 

4. Electrodynamics in axial gauges 

We shall stop using Lorentz covariant gauges from now on. The reason is that we are 
placing our entire emphasis on the gauge identities, so it is crucial for us that they be as 
simple as possible. Non-Abelian groups in relativistic invariant groups are known to 
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lead to highly complicated Slavnov-Taylor identities riddled with fictitious particle 
terms and various Bethe-Salpeter kernels; these make our task of solving the iden- 
tities well nigh impossible and force us into adopting an axial gauge where the Green 
functions cease to be Lorentz covariant (they depend on an external four-vector n )  
but where the identities for r‘”) are straightforward (Bernstein 1977, Delbourgo er a1 
1974, Kummer 1975). As an introduction to Yang-Mills theory let us first study 
electrodynamics. 

As we mentioned, in the gauge n . A = 0, the Ward-Takahashi identities for 
one-particle irreducible amplitudes are the naive ones obtained by canonical methods, 
i.e. the set (4). The one and only problem is that the r‘“) are functions of n as well as 
the momenta; e.g. in the scalar case, A(p, n)= C(p2,  p . n) .  The initial gauge approx- 
imation writes the r‘”) as functionals of A, and it is therefore essential to know 
something about the cut structure of the propagators in axial gauges. An examination 
of the  source self-energy past n ( p ,  n) in lowest-order perturbation theory reveals 
quite a lot: II is a function of p 2  and ( p .  n)’ and when ( p .  m 2 ,  there is just the 
usual relativistic cut for p 2  3 m . It is a strong indication that the correct represen- 
tation? of the propagator is 

2 

A(p, n)= d W 2 p ( W 2 , p .  n ) ( p 2 -  W2+i0)-’ J 
providing (p . n ) 2 <  W2 (threshold). Note how the covariant 
replaced by the parameter p .  n / m  in the axial gauge. With the 
one finds instead 

gauge parameter is 
fermion self-energy, 

if ( p  . n)’< m 2 .  The absence of terms [ y  . n, y . p ]  in S or is a consequence of 
C-invariance, since the Lagrangian multiplier field B like A, possesses negative 
charge parity. We defer the vector case to the next section. 

Finding ‘solutions’ of the Ward-Takahashi identities is complicated by the p , n 
dependence of the spectral functions. For scalar electrodynamics we can tackle the 
difficulty by writing the propagator difference as 

t To our knowledge a rigorous proof of (15) or  (16) is  lacking, but this has not prevented its use (Frenkel and 
Taylor 1976). 
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Then, by inspection, an appropriate solution of the vertex identity, 

A(P)r,(P, P ’ M P ’ )  

is rightly Bose symmetric. Observe also that the n, component disappears from the 
full Green function (multiplication by D * ” ( p - p ’ ) )  so that the only true signal of 
non-covariance is the n-dependence of the averaged spectral function. The same 
analysis can be carried over to the higher-point functions and again it is only the mean 
p which enters the expressions. 

With spinors the decomposition problem is not more difficult. Write 

} (18) 
1 P + Y . UP0 - p - Y . nPb 

p .  n - p ’ .  n 
- a  J dWn,{ 

y e p -  w y . p ’ -  w’ 
and so on to higher-point functions, with n, pieces being essentially irrelevant. These 
gauge covariant expressions are ready for redeployment in the field equations, but 
that exercise lies outside the scope of this paper. Rather, we pass on to discovering 
solutions for the more interesting non-Abelian problem. 

5. Non-Abelian theories in axial gauges 

Let A, stand for the gauge meson fields in the regular representation of the internal 
symmetry and let fabc be the structure constants. In axial gauges n .  A” = 0 ,  the 
connecting Green functions involving at least two vector lines, 

Cz:”,.;::, (XI, x2, . . .) = 8.. W/Sjz: ( x l ) S j 2 ( x 2 ) .  . . , 
including any number of source derivatives S / S j ,  S/SK (where K is the current of the 
multiplier field B ) ,  obey 

nwC., , ,( .  , x i ,  - ) = 0 (19) 
because of f-antisymmetryt, A particular case is the propagator 

iSnbA,,(x - y) = S2 W/Sj;(x)Sjby(y); n@A,, = 0, 

t And the basic functional gauge equation ( D J  + i n .  D S/SK)  W = 0. 
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which together with the mixed propagator 

i8abA,B(x-y)=82W/8j~(x)8Kb(y)=i8ab(n. a)-' dr84(x-y)  (20) 

and 

iABB(x - y )  = 8' W/8Ka(x)8Kb(y )  = 0 

make up the full  A,, B propagator matrix. The result (19) is not very surprising in 
view of the fact that C.,.( x * ) factorises as A,"(X - y ) r . y . (  * y . ) d4y. 

The r(") functions in the pure gauge theory satisfy the canonical identities 

dA (A-')$(x - y ) = 0 

aAr:Fv(xyz) = f n b e s 4 ( x  - ~ ) ( A - ' ) ; ~ ( X  - ~ ) + f " " 6 ~ ( ~  -Z)(A-');~(Y - X I  

a"r:?$(xyzw) = f 6 ( X  - y)r::v(xzw) +face84(x - z )rev(yxw) abe 4 (21) 

+fade84(X - w)r?;v(yxw) 
etc. And even if  additional sources 4i-on which the generators are represented by 
matrices (T"){-are incorporated, the identities retain their traditionally simple form, 

dAT;(x; y ,  z ) =  S 4 ( x  - y ) A - ' ( x  - z )T"  - Taa4(x - z )A- ' (y  - x ) .  ( 2 2 )  

How do we go about solving such involved relations as (21)? Many clues have been 
offered in previous sections, but before they can be applied one should appreciate that 
the multiplier field plays an important role and that the full propagator matrix A and 
its inverse A-' ,  with elements (A-')::, A-'(::) = nrSab (remaining unrenormalised like 
A B r )  and (A-')BB = 0, figure in many places. Also recall that rB,1,2... = 0 for one- 
particle irreducible amplitudes comprising at least two vectors. Let us therefore start 
with the spectral representation?, expected to be valid when ( p  . n ) 2  < 0, 

and of course the unaffected parts, 

AB,  = e , / ( e .  n ), ABB = 0. (24) 
The bare propagator is obtained by substituting a (  W 2 ) +  S (  W 2 ) ,  /3( W 2 ) +  0. Our 
objective is to write down all higher-point functions in terms of LY and p so as to satisfy 
identities (21), and to achieve it  we will have to synthesise the methods of §§ 2 and 4 in 
a manner which represents the full Bose symmetry of the amplitudes. 

For the moment, forget about the n-dependence of (Y and p. When p = 0, one is 
dealing with a massive vector theory with inverse propagator 

& : ( P I =  ( p ' -  W')(--T~" + P , L / P ' ) =  di:, G(P) = U,, B E - 0 .  ( 2 5 )  
Since 

A-' - 

AL?q)-AiL(r)= pA.A?,dp, q, r ) +  W2(r,ru/r2 -4 ,qY/q2)  (26) 

t We have extracted the internal factor Sob out of Aab; likewise below we remove the factor Fbc from rabc, 
always assuming the gauge symmetry is not spontaneously broken. 
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qrr‘nw + q s n w ’  qFq’l’ 1 
= I d W2a(  W2) ( - q w w ’ +  

q . n  
1 U’ Y r’’nv+runu’ r r 

x (-q”’” + 
r .  n 

with 

A similar analysis, when CY = 0 but p # 0, gives 

A’””’(4 )rA,,&qr)A”’”(r) 

The lack of total Bose symmetry in A@) and A”) has been remedied by adding 
supplementary terms, proportional to n, and n,, which vanish upon contraction with 
A ( q )  and A(r). Observe too that the nA-pieces themselves will disappear when A ( p )  is 
applied on (28) and (29) to obtain the full Green function, but that they cannot be 
dropped if we require the mixed function bBA(p)rA,,. 

A more serious obstacle is presented by the p .  n dependence of  the spectral 
functions. To circumvent this, define the components, 

and set /3 = 0 at first. Then 

= + J  d W 2 [ a ( W 2 , q .  n)+cr (W2,r .  n ) ] [ d ( q ,  W ) p .  Aad(r ,  W)],, 

+$j dW2[cr(W2, r .  n ) - a ( W 2 , q .  n ) ] [ d ( q ,  W ) + d ( r ,  W)lwV (31) 

immediately suggests a possible factorisation of p ,  following the manoeuvre of P 4. 
Unfortunately (31) is not yet ready for the operation since the straight recipe would 
not provide a totally symmetric r. Instead we must carry on with our manipulations 
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+; d W 2 [ a ( W 2 , q . n ) + a ( W 2 , r . n )  

- 2 a ( w 2 , e . n ) ~ [ d ( r ,  w)-d(4, w > I , ~  

+$ dW2[a(W2,r.n)-a(W2,q.n)][d(r, W ) + d ( q ,  W)],,”. 

J 

J 
We deduce that 

[A(4 ) r A ( r ) l A & v  

= 4 d W2[a(  W 2 ,  q . n)+a( W 2 ,  r . n )  

+ a(  w2, P . n ) ] [ d ( q ,  W)A‘“’d(r, W)]A,U 

+A J d W2[a(W2,  q . n)+a(  W 2 ,  r .  n )  

- 2 a ( w 2 , e .  n>I[d(r ,  w>-d(q, w>IWv 
+*I dW2[a(W2, r .  n ) -a (W*,q .n ) ] [d ( r ,  W ) + d ( q ,  W)lWV 

6 p .  n 

2 p .  n 

up to n,, n ,  terms in r. 
Having outlined the essential steps we may reasonably quote the complete, 
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A!,”( pqr 1 W n  ) = ;[ P ( W 2 ,  p . n ) + P ( W 2 ,  q . n 1 + P ( W 2 ,  r . n 11 A% 

+L [p(w2, q .  n ) + P ( w 2 ,  r .  n )  

- 2 p ( w 2 , p .  n ) ] [ ~ ’ ( r ,  w)--g-’(q,  w)IFV 
+^-[p(w2, r .  n > - P ( W 2 ,  q .  n > ] [ ~ - ’ ( r ,  W ) + g - ’ ( q ,  w ) ] , ~  

+ ( p h  w q p  c+ru perms). (34) 

6 p .  n 

2 p .  n 

As (32)  stands, we can discard all n-pieces from AQ and A’ to leave the relativistically 
covariant Yang-Mills vertex A’ weighted by the average spectral function, 

[ A ( p ) A ( q  )A(r)r(pqr)lAw~ =I d W 2 i [ a ( W 2 , p .  n ) + c y ( W 2 , q .  n ) + a ( W 2 , r .  n)][oP(P)oP(q)oP(r)A’]~@~ 

a pleasingly simple answer for the only Green function which really matters. The  
n-terms in A‘ and A’ come into their own for the other Green functions which are 
intimately tied to the gauge identities: 

AB, (p)A,’”’(p)A””’(r)r,,,,,(pqr) 
= ( p .  n)-’[A(q)p.  rA(r)]@” 

= ( p  . n ) - ’ [ A ” ” ( r ) -  A@”(q)] 

= d W 2 ( p .  n)-’pAdK@’(q,  W)oP””’(r, W)ArW,,,(pqrl W n )  

+ [ d W 2 ( p .  n)-’pAB@@’(q, W)%””’(r, W)Af,,,.(pqrl W n ) .  

The solution (35) is tailor-made for insertion in the Dyson-Schwinger equations and a 
proper treatment of the (non-perturbative) infrared behaviour of the gluon pro- 
pagator, However, a first investigation of the Abelian problem will be needed to  set 
the scene. 

Appendix. Infrared behaviour of charged vector meson theory 

The Dyson-Schwinger equations in vector electrodynamics include the source equa- 
tion 

z-’6; =h, , (p)[ - (p2-m:)vA” +PAP”] 

-ie2 [ ;14kD~,,(k)A,,,(p)r”@’”’(p, p -k)h ,s , (p  - k ) R A U P ( p ,  p - k )  

+tadpole term + two-photon contribution (A. 1) 
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wherein 

R A , ~  = - V r u ( 2 P - k ) ~  + (P-k ) ,Vv~  +PuV,A - M ( ~ , V V A  - ~ U V L L A )  (A.2) 

is the bare vertex (9), obtained by minimal substitution, to which we have added a 
magnetic moment M. The luxury of magnetic interactions must be afforded if vector 
electrodynamics is eventually regarded as part of a Yang-Mills system, when M = 1 
becomes the norm rather than M = 0. Similarly, in the initial gauge approximation, 
we will include M as part of the vertex R, since i t  is not determined by the gauge 
identity. Actually for infrared behaviour magnetic terms are innocuous as they are 
visibly soft, but for ultraviolet characteristics they become important. 

Make the initial substitution (1 1) in ( A . l )  to obtain the integral equations for the 
spectral functions. Dropping the e4,  2y-piece, (in analogy to scalar electrodynamics) 
the problem reduces to 

where nR and II* are self-energies in lowest-order perturbation theory for a meson of 
mass v’s possessing interactions (A.2) and (10) respectively at one  vertex. If we 
decompose II into longitudinal and transverse parts, 

n,&, s > =  (-vLLLV + P L L P Y / P 2 ) ~ L ( P 2 ~  SI+ ( P , P ” / P 2 ) W 2 >  SI 

and take imaginary parts of (A.3), we remain with the coupled scalar equationst 

(s - m ’)@(s 1 + T ( S ) )  

The infrared behaviour concerns the limit s + m2,  whereas when s +CO we anticipate 
that the ultraviolet behaviour will show symptoms of non-renormalisability i f  
developed perturbatively in powers of e 2 ,  starting with p ( s ) =  S(s - m 2 ) ,  T ( S )  = 0. 
However, let us look for non-perturbative solutions of (A.4). The  absorptive parts 

entering there are straightforwardly calculated to equal ( p 2  2 m2), 

t Note the sum rules 2-’ = I  ( p ( s ) +  ~ ( s ) )  ds  = mi 5 s - ’ p ( s )  ds which follow from (18). At the level of (A.4) 
subtractions are made to interpret 

p 2 - s j  I m n ( s ’ , s ) d s  
n ( p  ,SI=- 

iT (s ’ -s) (s’ - -p2)  

as the renormalised self-energy 
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2 2  2 

Im n / ( p 2 ,  m 2 )  = e (' - 
3 2 r p  {6m ' p 2  + M ( p 2  - m2)[ (M + l ) (p2 - m 2 ) -  3(p2 + m')] 

[ 8 p 2 ( p 2  + m 2, + f ( p 2  - m2)2 + (1 - a ) ( p 2  + m 2 ) ( 3 p 2  + m2)]  e 2 ( p 2 - m 2 )  
64rp4  

Im n : ( p 2 ,  m )= 

e 2 ( p 2  - m 2 )  
64.rrp" 

Im n((p2, m 2 )  = [(p2-m2)2-3(1 - a ) ( p " -  m4)]. 

Notice the threshold behaviour of Im n,r which, associated with ( p 2 / m 2  - 1) Im nf, 
means that T vanishes relative to p as the mass shell is approached. Also, as expected, 
magnetic M-contributions disappear as p 2 + m 2 .  In fact, in the infrared limit, the 
relevant equation simplifies to (a  # 3), 

and leading to 

The answer is identical to scalar and spinor electrodynamics, and we conjecture that 
such behaviour is valid for any spin field. 

The ultraviolet limit is not so trivial since we must deal with the coupled pair (A.4). 
Even in the Fermi gauge (a = 1) with M set equal to zero, the reduced equations look 
pretty formidable: 

~ ( 2 )  = -7 e' Jlz dz'  [ p ( z ' )  (3  --) 32' + ~ ( 2 ' )  4 1 2 ' 2  (1 --) ] 
1671. z 2 

since the solutions cannot be simple power dependences p - z ' ,  T - zr  even asymp- 
totically. 
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